100G系统中PM-QPSK光学解调器的研究

& nbsp; PM-QPSK技术具有很高的频谱效率,可以将传输符号的波特率降低到二进制调制的四分之一,并且可以大大提高光信噪比,并且可以使用功能强大的DSP处理偏振模式。 。
本文分析了PM-QPSK技术调制和解调的基本原理,并对100G系统中接收机的前端光解调器进行了详细分析。简介PM-QPSK(极化多路正交相移键控)信号在接收侧采用相干检测技术,以实现高性能的信号解调,直接解调和差分解调。
相反,相干检测中使用的本地激光器的功率远大于输入光信号的光功率,因此可以大大提高光信噪比[1]。特别是,相干检测技术充分利用了强大的DSP(数字信号处理,数字信号处理)技术来处理偏振模式复用信号,可以通过后续的数字信号处理和信号重建来补偿这种偏振模式复用信号,从而可以恢复传输的信号。
(偏振模,振幅,相位),极大地消除了由光纤引起的传输损伤,例如PMD(极化模色散,偏振模色散)公差高达30ps,而没有线色散补偿则可以承受数万ps / nm,与非相干PM-DQPSK或OFDM(正交频分多路复用,正交频分多路复用)等其他100G传输方案相比,PM-QPSK与相干检测相结合提供了最优化的解决方案。系统供应商选择了100G传输解决方案。
PM-QPSK调制原理第四相移键控(QPSK)是一种多元素(4元素)数字频带调制方法。信号的正弦载波具有4种可能的离散相位状态,并且每个载波相位都携带2个二进制符号,第n个时隙的QPSK信号可以表示为:1(1),A是信号的幅度,即持续的; θn是调制相位。
有四个可能的值。特定值由时间确定。
时隙发送的符号值确定。 fc是载波频率; Ts是四元符号间隔。
QPSK有两组四个常用的相位值,分别称为A模式和B模式。如果它们是0,π/ 2,π,3π/ 2,则这是初始相位为0的QPSK信号的矢量图。
如果是& pi / 4、3& pi / 4、5& pi / 4、7& pi / 4,则初始相位为& pi / 4的QPSK信号的矢量图是如图1 B所示。 QPSK调制响应输入的代码对(00、01、10、11)并移动光载波相位。
表1列出了与四进制符号相对应的两位以及两组相位值A和B [2]。单个100Gbps分为两个50Gbps流的两个极化模式-TE(横向电模式)和TM(横向磁模式)。
此步骤将产生两个具有相同频率的载波,然后通过QPSK调制每个载波。由于QPSK调制将2个位封装在一个符号中,因此两种极化模式可以获得两个25G符号/秒的流,总计为100Gbps。
由于QPSK信号以具有两个偏振面的复用偏振模式传输,因此可以称为DP-QPSK(双偏振QPSK)或PM-QPSK(偏振模式QPSK)。 & Nbsp;图1 QPSK的A和B两种方式的矢量图。
表1 QPSK的两组相位值。

公司: 深圳市捷比信实业有限公司

电话: 0755-29796190

邮箱: ys@jepsun.com

产品经理: 汤经理

QQ: 2057469664

地址: 深圳市宝安区翻身路富源大厦1栋7楼

微信二维码

更多资讯

获取最新公司新闻和行业资料。

  • double sum = 0.0; for(int i = 0; i < n; i++) { if(resistors[i] > 0) { sum += 1.0 / resistors[i]; 在C语言中计算并联电阻的总电阻是一个常见的应用问题,它涉及到基本的物理知识与编程技巧的结合。并联电路中的总电阻可以通过所有并联电阻倒数的和的倒数来计算。首先,我们需要定义一个函数来处理这一计算过程。例如...
  • 1安铅保险丝直径约0.5至0.8毫米 铅保险丝的直径与所需通过的最大电流有关。一般来说,用于1安培电流的铅保险丝直径大约在0.5毫米到0.8毫米之间,但具体尺寸还需参照实际产品的规格表或制造商提供的数据。因为不同制造商可能有略微不同的设计标准和材料...
  • 如何根据系统需求选择合适的参考电压组件:0.6V vs 1.24V 从系统级设计视角看0.6V与1.24V参考电压组件的选型策略在嵌入式系统、传感器接口电路以及电源管理芯片设计中,参考电压组件的选择直接影响系统的可靠性与能效表现。本文将从多个维度深入剖析0.6V与1.24V参考电压组件的选型...
  • 如何在8V~29V系统中正确设计P/N沟道MOS管驱动电路 引言:驱动电路的重要性在8V至29V的电力电子系统中,正确设计MOS管的栅极驱动电路是确保器件稳定、高效运行的关键环节。无论是P沟道还是N沟道器件,若驱动不当,可能导致导通不完全、开关速度慢甚至击穿损坏。核心设计原...
  • N+P互补对MOS管在8V至29V电源系统中的应用与优势分析 引言在现代电子系统中,尤其是工业控制、汽车电子和高电压电源管理领域,8V至29V的宽电压范围供电需求日益增长。N+P互补对MOS管(即N沟道与P沟道MOSFET组成的互补结构)因其优异的开关性能和高可靠性,成为该电压区间内核心...
  • 电阻精密度1%能代0.1%吗? 不能!其实,对于不是搞计量的不需要分的那么清楚,可以大体上认为高精密、高准确、低误差等是一个意思。但是,对于“精度”一词,可以分解成分解成三个要素:&nbsp;1 、温度系数:温度变化是电阻的大敌,温度系数一...
  • 如何在8V–29V系统中优化选择N沟道与P沟道MOS管? 8V–29V系统中N沟道与P沟道MOS管选型策略指南在设计8V至29V的电源管理系统、电机控制器或智能开关电路时,正确选择N沟道或P沟道MOS管至关重要。以下从多个维度提供实用选型建议,帮助工程师实现最佳性能与成本平衡。1. 明确应...
  • 0.5A以上电流系统中如何优化选择萧特基整流器与低Rds(on) MOS管? 引言:为什么0.5A是关键分界线?在电源设计中,0.5A常被视为一个性能评估门槛。低于此值,普通二极管或低性能MOS管可能已足够;但一旦超过,效率损失、发热问题将迅速凸显。因此,合理选型至关重要。1. 萧特基整流器的选型...
  • 从0.6X0.3mm到0.8X0.8mm:深入对比两种Chip SMD封装规格 Chip SMD-0.6X0.3mm 与 0.8X0.8mm 封装性能对比在电子元器件选型中,Chip SMD-0.6X0.3mm 和 0.8X0.8mm 是两种极具代表性的超小型封装形式。它们虽同属表面贴装技术,但在尺寸、应用场景及制造难度上存在明显差异。1. 尺寸与物理特性对比 参...
  • SMD-1.6X0.8mm LED灯珠与Vishay 0.068μF电容在小型电子设备中的应用解析 引言随着电子设备向微型化、高性能化方向发展,SMD(Surface Mount Device)封装元件在电路设计中扮演着越来越重要的角色。其中,1.6×0.8mm尺寸的LED灯珠与Vishay品牌的0.068μF电容因其高集成度和稳定性,广泛应用于智能穿戴设备、便...
  • 如何在31V至99V系统中正确选择P沟道与N沟道MOS管?技术指南与实战建议 前言:高压系统中的关键元件选择在31V至99V的直流供电系统中,如储能系统、电动工具、医疗设备及智能电网接口装置,正确选择合适的MOS管是确保系统稳定、高效运行的核心。本文将结合实际工程案例,提供一套完整的选型流...
  • 103瓷片电容表示的是0.01μF的电容值而非K单位 103瓷片电容表示的电容量是0.01μF(微法),而不是K(千)单位。这里的数字和字母组合是一种简化标记方式,用于表示电容器的电容值。具体来说,“103”中的“10”代表的是电容值的有效数字部分,“3”则表示在有效数字后面...
  • 深入解析:如何根据系统需求选择合适的N MOSFET?40-300V vs 0-40V 为什么不同耐压范围的N MOSFET适用于不同领域?在现代电子系统中,正确选型N MOSFET是保障系统稳定性与效率的关键。本文以40-300V与0-40V两个典型范围为例,深入剖析其技术差异与选型逻辑。1. 工作电压决定耐压选型系统输入电压...
  • 0.5A以下电子系统中萧特基二极管与低Rds(on) MOS管的选型指南 前言:精准选型是系统可靠性的基石在0.5A以下的小功率电子系统中,如智能手表、无线传感器节点、蓝牙模块等,电源管理单元(PMU)的设计直接影响设备续航与稳定性。本文将从选型标准、参数对比、封装建议等方面,提供一...
  • PT100热电阻温度与电阻值对照表(0°C基准0.385) 根据PT100热电阻的标准特性,其电阻值随温度变化而变化,通常基于0°C时电阻为100Ω作为参考。对于给定的温度系数α=0.385Ω/°C(这指的是每度变化的电阻增量),我们可以构建一个简化版的对照表来展示特定温度下对应的电阻值...
  • 贴片合金采样电阻2512 0.01R 1% 2W 加工定制否品牌TA-I/大毅型号RLP25FEER010种类合金性能耐高温材料合金制作工艺合金工艺外形平面片状允许偏差±1%温度系数50ppm/℃额定功率2(W)功率特性大功率频率特性中频产品性质高精度 合金检测电阻标称阻值0.01R货号21+是否跨...
  • 0.6V与1.24V参考电压组件在精密模拟电路中的应用对比 0.6V与1.24V参考电压组件的核心差异分析在现代模拟集成电路设计中,参考电压组件是确保系统精度和稳定性的关键元件。其中,0.6V和1.24V两种参考电压组件因其独特的性能参数,在低功耗、高精度应用场景中备受关注。1. 工作原...
  • 齐纳二极管与肖特基二极管在汽车电子系统中的协同应用研究 齐纳二极管与肖特基二极管在汽车电子系统中的协同应用研究在复杂的汽车电子架构中,单一类型的二极管难以满足所有功能需求。因此,将齐纳二极管与肖特基二极管进行协同部署,已成为提升系统整体性能的重要策略。本文...
  • P沟道MOS管栅极驱动设计中的常见问题与解决方案 P沟道MOS管栅极驱动设计中的典型问题分析尽管P沟道MOS管在高侧开关中具有优势,但在实际应用中常因驱动不当导致性能下降甚至器件损坏。以下是常见的驱动设计问题及其应对策略。1. 栅极电压不足导致导通不充分当栅极电压未...
  • 精密贴片电阻器AR系列与低Rds(on) MOS管0.5A在高效电源设计中的应用解析 精密贴片电阻器AR系列与低Rds(on) MOS管0.5A的协同优势在现代电子设备中,尤其是便携式医疗设备、智能传感器和物联网模块等对功耗和空间要求极高的场景下,精密贴片电阻器(AR系列)与低Rds(on) MOS管0.5A的组合正成为高效率电源...